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Introduction
The hydrostatic primitive equations of atmospheric dynamics in isobaric co-
ordinates constitute an initial-boundary value problem with a free surface
condition. Most of the numerical weather prediction schemes are based on the
primitive equations model. We refer, for instance to1 for an updated review of
these models. Although some numerical models solve the primitive equations
directly in pressure co-ordinates (see for example)2. most of the present
schemes employ terrain following co-ordinates for the vertical discretization.
For illustrative purposes, in this paper a reformulation of the primitive
equations in the simplified case of a dry, barotropic atmosphere is presented
and discussed. The primitive equations in isobaric co-ordinates are rewritten,
by expressing the geopotential gradient in terms of the surface pressure
gradient. Furthermore, the free surface equation for the atmospheric pressure
at the Earth’s surface is written in conservative form. In most of the currently
used schemes, the sources of instability are handled by using a semi-implicit
discretization of the geopotential gradient (e.g.1,3-6, and the references
contained therein). The present approach aims at separating the semi-implicit
treatment of the external gravity waves from that of internal gravity waves.
As a first step in this direction, a semi-implicit, finite difference algorithm is
developed in the case of a barotropic atmosphere, using isobaric co-ordinates
instead of terrain following ones. Following the approach used in7,8, the
surface pressure gradient in the momentum equations and the horizontal
velocities in the free surface equation are discretized implicitly in time. There
results a five-diagonal system of equations for the ground pressure values.
Advection and horizontal viscosity terms are discretized by a time-explicit
semi-Lagrangian method; vertical viscosity terms are treated implicitly, in
order to improve numerical stability. The stability of the resulting scheme
depends only on the horizontal viscous terms. Furthermore, the present
method is mass conservative and combines the efficiency of the semi-implicit
feature (see9 for a review of semi-Lagrangian, semi-implicit schemes) with a
fine resolution of the vertical structure of the flows. Further research is in
progress, for the more general case of a baroclinic atmosphere, in order to

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 7 No. 1, 1997, pp. 63-80.
© MCB University Press, 0961-5539

Received July 1995
Revised April 1996



HFF
7,1

64

obtain a semi-implicit scheme whose stability is independent on the speed of
internal gravity waves.

Reformulation of the 3D primitive equations
The standard form of the primitive equations in pressure co-ordinates is (see
e.g.10,11):

(1)

with the kinematic boundary condition being

(2)

at the Earth’s surface and ω(λ ,θ,0,t) = 0 at the upper boundary of the
atmosphere. Here, (λ, θ) denote the horizontal spherical co-ordinates and p the
vertical isobaric co-ordinate, a is the Earth’s radius, φ is the geopotential, Ω is
the Earth’s angular velocity, and f = 2Ω sin θ is the Coriolis coefficient. η = η(λ,
θ, t) denotes the pressure at the Earth’s surface; the orographic profile is
described by a function h = h(λ, θ). The horizontal eddy viscosity coefficient is
assumed to be constant and is denoted by µ. The vertical eddy viscosity
coefficient is denoted by υ. Following the usual notations, we also set x = λa cos
θ, y = aθ. The velocities are defined as u = a cos θ dλ—dt , v = adθ—dt , ω = 

dp—dt and the
Lagrangian derivative is

The gradient at constant pressure is denoted by

and the spherical Laplacian in the horizontal co-ordinates is denoted by

By using the equation of state p = RTρ, the hydrostatic assumption is
expressed in terms of the geopotential as

∂φ
∂p

RT

p
= – ( )3
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where R denotes the gas constant, T and ρ denote the absolute temperature and
the density, respectively.

In order to express the horizontal gradient of the geopotential in terms of the
gradient of η, consider the equation

(4)

where the geopotential at the Earth’s surface is given by

Differentiating (4) with respect to the horizontal variables, by the chain rule one
obtains

In an autobarotropic atmosphere, the temperature is assumed to depend on the
pressure only, i.e. T = T(p) (see e.g.12). In this case, by using equation (3) one
obtains

(5)

Furthermore, the equation for η can be set in conservative form by using the
continuity equation and the boundary condition ω(λ, θ, 0, t) = 0. Specifically,
from the continuity equation in pressure co-ordinates one has

Thus, by using the kinematic conditions (2) one gets the following conservative
form for the free surface equation

(7)

The present formulation of the barotropic primitive equations is then given by

(6)
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with the free boundary condition

(9a)

at the Earth’s surface p = η. The dynamical boundary conditions at the Earth’s
surface are taken to be

where K denotes a non-negative drag coefficient. The specific form for of v and
K is to be determined from an appropriate turbulence model (see e.g.13,14). At
the boundary p = 0 the dynamic boundary conditions are taken to be

(10)

The vertically averaged equations associated to (8) can also be considered. For
an atmosphere at constant temperature T the equations for the averaged
quantities

can be derived by the usual approximations, so that one has

where D—Dt = 
∂—∂t + U  

1——a cosθ
∂—∂λ + V

1–a 
∂—∂θ and γ is a non-negative friction coefficient

obtained from vertical averaging. Equations (11) are equivalent to the well-
known shallow water equations. In fact, for any pressure value p one has that

(11)

(8)

(9b)
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(12)

Therefore, for α = λ, θ, t there results

and, choosing the reference pressure level p so that log 
η
–p = 1, the customary

shallow water equations are re-obtained.

Semi-implicit discretization of the 3D barotropic model
The barotropic equations (8) are considered at each time t on the domain D = [0,
2π] × [– π–2, π–2] × [0, η(λ, θ, t)]. Given a maximum pressure value pmax, such that
η(λ, θ, t) ≤ pmax, a staggered discretization grid with Np discrete pressure levels
pk+

1–
2
is introduced, such that p1–

2
= 0, pNp+

1–
2

= pmax and p1–
2

< … < pNp+
1–
2
. For each

vertical level k there is an horizontal grid plane with Nx periodically arranged
nodes in the λ direction and Ny nodes in the θ direction. Spatial discretization
steps are defined as ∆λ = 2π—

Nx
, ∆θ =  

π—Ny; λi = (i – 1–2)∆λ, i = 1, …, Nx, θj = –
π
–
2+(j –

1–
2)∆θ, j = 1, …, Ny, and ∆pk = pk+

1–
2
– pk–

1–
2
, k = 1, …, Np. We also define the

discretization steps in x, y co-ordinates as ∆xj = a∆λ cos θj, ∆y = a∆θ. The
horizontal grid planes are arranged as a staggered, C-type discretization grid.
Each cell is numbered at its centre with indices i, j and k; The discrete u velocity
is then defined at half integer i and integers j and k; v is defined at integers i, k
and half integer j; ω is defined at integers i, j and half integers k. Finally η, h are
defined at integers i, j (see Figure 1). At points where they are not defined, the

Figure 1.
Grid cell



HFF
7,1

68

discrete variables are computed by simple arithmetical mean of the nearest
defined values. At each discrete time n, only the cells below the free surface
correspond to air parcels above the Earth’s surface. The index k = Mn

i,j denotes
the top cell of the effective computational domain (see Figure 2). Specifically,

Later, for convenience, Mn
i,j will be denoted simply by M. Accordingly, the

vertical grid spacing at the top layer also depends on the discrete time n and is

Figure 2.
Vertical grid section
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defined as ∆pn
i,j,M = ηn

i,j – pM–1–
2
. The resulting computational domain consists of

at most Nx × Ny × Np cells. At the South pole cells ( j = 1) the velocities vi, 1–2, k are
not defined and never come into play. Similarly, at the North pole cells ( j = Ny)
the velocities vi, Ny+1–

2, k are not needed.
In order to obtain a finite difference scheme whose stability is independent of

the free-surface wave speed, the gradient of surface pressure in the momentum
equations (8) and the horizontal velocities in the free surface equation (9) are
discretized implicitly in time. Furthermore, since we are interested in achieving a
relatively fine vertical resolution, the vertical viscosity terms and the friction terms
at the Earth’s surface will be discretized implicitly as well, in order to improve the
stability of the method (see e.g.15). It will be shown that, in this way, the stability
restrictions for the present method will only depend on the horizontal viscosity.

We denote by (Gu)ni+1–
2 , j,k, (Gv)ni, j+1–

2 , k the terms discretized explicitly in the
momentum equations. These include the semi-Lagrangian discretization of the
advection and horizontal viscosity terms, Coriolis terms and orography terms.
For a detailed presentation of the semi-Lagrangian methods employed, we refer
to3,7,15; see also9 for a more general discussion and1 for the details of the
implementation in spherical geometry.

The semi-implicit discretization of equations (8)-(9) takes then the form

(13)

(14)

(15)
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where Aj = a {[sin ∆θ—2 ]/∆θ—2 }∆λ∆θ cosθj, fj = 2Ω cos θj and δ is an implicitness
parameter. For δ = 1, a completely implicit scheme is obtained. Equations (13)-
(15) yield a numerically stable scheme for 1–2 ≤ δ ≤ 1, such that maximum
accuracy and efficiency are obtained in the case δ = 1–2 (see the discussion in8).
Use of δ = 1–2, however, may generate dispersion waves, and δ > 1–2 is usually
recommended. Equation (16) is the finite volume discretization of the
conservative equation for η. Since cos(θ1 – ∆θ—2 ) = cos(θNy

+ ∆θ
—2  ) = 0, equation (16)

does not depend on the value of v at the poles. Thus, this equation is valid for all
j = 1, Ny. The numerical boundary conditions at the Earth’s surface are taken to
be

The numerical boundary conditions at the top of the atmosphere are taken to be
ωi,j,

1–
2
= 0 and

(17)

In the particular case Np = 1 one has ∆p1 = ηn, so that equations (13)-(15) yield
a semi-implicit scheme consistent with the vertically averaged equations (11).
An analogous two-dimensional scheme on the sphere has been presented in16.

Solution algorithm
Equations (13)-(16) constitute a linear system of at most NxNy(3Np + 1)
equations. In order to compute un+1

i+1–
2, j, k, v

n+1
i, j+1–

2, k, ω
n+1
i, j, k+1–

2
, and ηn+1

i, j  , such a system
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has to be solved at each discrete timestep. The number of unknowns is rather
large even for coarse grids. By setting Nx = Ny = Np = 100, for example, a
system of 3.010.000 equations in 3.010.000 unknowns is obtained. Therefore,
equations (13)-(16) are decoupled, so that their solution can be reduced to the
solution of a set of simpler linear systems. Specifically, using the matrix
notation and defining the vectors ∆P, U, V, GU, GV as

and the tridiagonal, positive definite matrix

where ak = υk
∆t—∆pk and

equations (13), (14) and (16) are written in the following matrix form

(18)

(19)
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(20)

where

For each i, j the linear equations (18) and (19) for U
n+1
i±1–

2
, j and V

n+1
i, j±1–

2
are inverted

formally to obtain

These expressions are used in equation (20) in order to eliminate for U
n+1
i±1–

2, j and
V

n+1
i, j±1–

2
, so that for each i, j the following equation for ηn+1

i, j  results:

(21)

where

and α, β are defined as

Since A is positive definite, A–1 is also positive definite, so that it follows
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Consequently, equation (21) forms a symmetric, positive definite, diagonally
dominant five-diagonal system of Nx Ny equations. The solution of (21) is
calculated by a preconditioned conjugate gradient method. A simple diagonal
preconditioning has been used in the implementation; furthermore, the two-
colour structure of the five-diagonal matrix has been exploited (see for
example17).

Once the surface pressure at time n + 1 has been determined, equations (18)
and (19) constitute two Nx Ny tridiagonal linear systems of at most Np equations
each. Such systems are independent, symmetric, diagonally dominant and
positive definite. Thus, they can be efficiently solved by a direct method to
compute U

n+1
i±1–

2, j and V
n+1
i, j±1–

2
. Finally, for each cell column the vertical velocities

ωn+1
i, j, k+1–

2
, k = 1, …, M, are computed from the discretized continuity equation (15),

by using the known values of U
n+1
i±1–

2, j and V
n+1
i, j±1–

2, k and the boundary condition
ωn+1

i, j, 1–2
= 0.

At each time step the computation of the solutions of (13)-(15) is then
summarized as follows:

(1) compute the explicit terms (GU)ni+1–
2, j and (GV)ni, j+1–

2
;

(2) solve the five-diagonal system (21) to compute ηn+1;

(3) solve the 2 Nx Ny tridiagonal systems (18) and (19) to compute Un+1,
Vn+1;

(4) compute ωn+1 from the discretized continuity equation (1 5).

Stability analysis and numerical results
On a flat, periodic domain in Cartesian co-ordinates, the von Neumann stability
analysis for the present model in the linear case can be carried through along
the same lines as that in8 for the analogous 3-D shallow water model.
Furthermore, a linear stability analysis in L2 norm in spherical co-ordinates has
been carried out in18 for the fully implicit scheme (δ = 1). As in8, one can
conclude that the present scheme is unconditionally stable with respect to
surface gravity waves and vertical viscosity terms. The only stability
constraint on the time step is due to the discretization of the horizontal viscosity
terms and is given by

from which it follows that this method becomes unconditionally stable in the
absence of horizontal viscosity.

Some preliminary tests on the present numerical scheme have been carried
out for various large scale atmospheric flows. Simple linear interpolation has
been used for the semi-Lagrangian advection, and the simplest possible

( ) –∆ ∆ ≥P PT A 1 0
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preconditioner has been used for the solution of the five-diagonal system for η.
The test cases considered here arise from Tests numbers 2 and 6 in19 for the
shallow water equations on the sphere. Such tests have been adapted to
equations (11), and the 3-D model has been run with either one or more vertical
layers. The initial values for the 500mb geopotential have been transformed into
the corresponding initial values for η by using the hydrostatic equation (12) in
the case of an isothermal atmosphere, and the same initial velocity fields as in19

have been used. In all the tests the parameter δ was taken to be equal to 0.55.
The scheme is effectively mass conservative, relative changes in the value of

∫ ∫ η(λ, θ, t) cosθdλdθ being of the order of 10–12 over 30 days of simulation of a
stationary flow with a timestep of one hour.

Figure 3.
Relative errors on η in
L1 norm (dotted line), 
L2 norm (full line) and
L∞ norm (dashed line)
for a zonal flow rotated
by π/2, 720 × 360
gridpoints, ∆t = 1,800s
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Relative errors in L1, L2, L∞ norms for the values of η with respect to the known
analytical solution of Test 2 for a zonal flow rotated by an angle 

π–
2 are shown in

Figure 3. Figure 4 shows the relative error in L2 norm for the velocities. The
model was run in this case with only one vertical layer on a 720 × 360 grid with
a timestep of 1,800s. The temperature was taken to be T = 273°K throughout,
and a purely inviscid flow (µ = υ = K = 0) was considered. The initial flow field
for the same rotation angle is shown in Figure 5, and Figure 6 shows the
resulting velocities at t = 2 days, as obtained from a simulation with only one
vertical layer on a 180 × 90 grid with a timestep of 3,600s. In Figures 7-9 the flow
fields for Test 6 are shown, as computed at times t = 0, 1, 2 days in a simulation
with only one vertical layer on a 180 × 90 grid with a timestep of 1,800s. In

Figure 4.
Relative error on (u, v)

in L2 norm for a 
zonal flow rotated by

π/2, 720 × 360
gridpoints, ∆t = 1,800s
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Figure 5.
Zonal flow rotated 
by π/2 at t = 0, 
180 × 90 gridpoints

Figure 6.
Zonal flow rotated by
π/2 at t = 48 hours, 
180 × 90 gridpoints, 
∆t = 3,600s
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Figure 7.
Rossby wave flow 

field at t = 0, 180 × 90
gridpoints

Figure 8.
Rossby wave flow 

field at t = 24 hours, 
180 × 90 gridpoints, 

∆t = 1,800s

Figure 9.
Rossby wave flow field

at t = 48 hours, 180 × 90
gridpoints, ∆t = 1,800s
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Figures 10 and 11 the isolines of η for Test 6 are shown at times t = 0 and t = 5
days, respectively, as obtained from a simulation with five vertical layers on a
360 × 180 grid with a timestep of 600s. In this case, the vertical viscosity and
momentum drag coefficients have been taken from14.

Although the present implementation of the model cannot compete with high
accuracy spectral models on tests with simple geometry (for example the
corresponding results in20), the main features of such large scale flows are well
reproduced. Specifically, it can be noted that the four-wave structure of the
initial configuration in Test 6 is preserved, which is one of the necessary
requirements discussed in20 for a shallow water solver.

In order to test the performance of the model, a three-dimensional test with
the initial data of Test 6 has been performed on an ALPHA AXP 21064 (which
allows for 181.6 SPECfp92) using a horizontal grid with 360 × 180 gridpoints,
40 vertical levels and a 900s timestep. The CPU time needed for a one-day

Figure 10.
Rossby wave pressure
field at t = 0, 
360 × 180 gridpoints

Figure 11.
Rossby wave pressure
field at t = 5 days
360 × 180 gridpoints,
∆t = 600s
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simulation was approximately 2 hours 45 minutes, thus showing that the model
allows for fine vertical resolution at relatively low computational costs.

Conclusions
The present finite difference, semi-implicit, semi-Lagrangian scheme captures
the main dynamical features of barotropic atmospheric motion. Given the
necessary refinements, it can be regarded as the kernel of a complete baroclinic
model. Further work is in progress to handle internal gravity waves within the
same framework, as well as to consider heat sources, water vapour transport
and regional scale test problems.
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